Analysis of $x \mapsto \frac{x^3 - x^2 + 3x + 9}{x^2 - 2}$

We consider the function defined by $f(x) = \frac{x^3 - x^2 + 3x + 9}{x^2 - 2}$. Its domain of definition is $]-\infty ; -\sqrt{2} [\cup] -\sqrt{2} ; \sqrt{2} [\cup] \sqrt{2} ; +\infty[$. It is derivable on $]-\infty ; -\sqrt{2} [\cup] -\sqrt{2} ; \sqrt{2} [\cup] \sqrt{2} ; +\infty[$. Its derivative is $f'(x) = \frac{(x+1)^2 (x^2 - 2x - 6)}{(x^2 - 2)^2}$. It admits the below limits:

$$\lim_{x \to -\infty} f(x) = -\infty$$
$$\lim_{x \to -\sqrt{2}} f(x) = -\infty$$
$$\lim_{x \to -\sqrt{2}} f(x) = +\infty$$
$$\lim_{x \to \sqrt{2}} f(x) = -\infty$$
$$\lim_{x \to \sqrt{2}} f(x) = +\infty$$
$$\lim_{x \to +\infty} f(x) = +\infty$$

The equations of its vertical asymptotes are:

$$x = -\sqrt{2}$$
$$x = \sqrt{2}$$

The equation of its oblique asymptote is:

$$y = x - 1$$

A table of values is:

Its table of variations is:

x	$ -\infty $	$1 - \sqrt{2}$	7 –	$\sqrt{2}$	-1	$\sqrt{2}$	$\sqrt{7}+1$	$+\infty$
f'(z)	;)	+ 0	—	_	0 –	-	0	+
f(x	$) -\infty -$	$\longrightarrow \frac{11 \cdot \sqrt{7}}{2 \cdot \sqrt{7} - 6} - \frac{1}{2}$	$\frac{26}{\sqrt{7}-6}$ \longrightarrow $-\infty$	+~~	$-4 \longrightarrow -\infty$	+~~	$\frac{11\cdot\sqrt{7}}{2\cdot\sqrt{7}+6} + \frac{26}{2\cdot\sqrt{7}+6}$	-6 +∞

Its graph is:

 $\underline{\text{Note}}:$ these results have been obtained from an automated program and are not guaranteed to be exact.

Discover my other apps on lovemaths.eu/apps

