Résolution de
$$\frac{5(x^4+3x^2-1)}{6}=0$$

 $\frac{5\left(x^4+3\,x^2-1\right)}{6}=0$ se ramène à une équation du quatrième degré de la forme $ax^4+bx^3+cx^2+dx+e=0$ avec :

$$a = \frac{5}{6}$$

$$b = 0$$

$$c = \frac{5}{2}$$

$$d = 0$$

$$e = -\frac{5}{6}$$

Il s'agit d'une équation bicarrée. On pose donc $X = x^2$.

Ceci nous amène à l'équation : $\frac{5X^2}{6} + \frac{5X}{2} - \frac{5}{6} = 0$. Son discriminant vaut $\Delta = b^2 - 4ac = (\frac{5}{2})^2 - 4(\frac{5}{6})(-\frac{5}{6}) = \frac{325}{36} \approx 9,02 > 0$.

Cette équation du second degré admet donc deux solutions :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = -\frac{\sqrt{13}}{2} - \frac{3}{2} \simeq -3,30$$

 $X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{\sqrt{13}}{2} - \frac{3}{2} \simeq 0,302$

Puisque $X_1 < 0$ et $X_2 > 0$, on en déduit les solutions réelles :

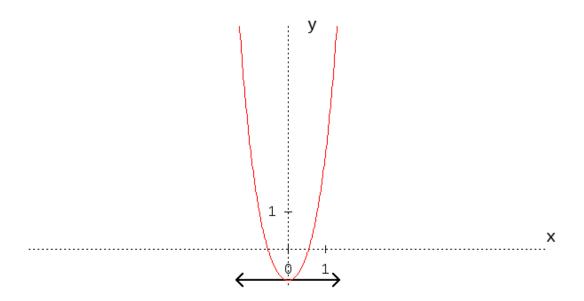
$$x_1 = \sqrt{X_2} = \frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}} \simeq 0,550$$

 $x_2 = -\sqrt{X_2} = -\frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}} \simeq -0,550$

L'ensemble des solutions dans \mathbb{R} est donc : $S = \{-\frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}}; \frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}}\}.$

Graphiquement, la courbe d'équation $y = \frac{5x^4}{6} + \frac{5x^2}{2} - \frac{5}{6}$ coupe deux fois l'axe des abscisses, aux points d'abscisses x_1 et x_2 .

1



En considérant les solutions complexes, on trouve dans $\mathbb C$:

Donc
$$S = \{\frac{\sqrt{\sqrt{13}+3}\,i}{\sqrt{2}}; -\frac{\sqrt{\sqrt{13}+3}\,i}{\sqrt{2}}; \frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}}; -\frac{\sqrt{\sqrt{13}-3}}{\sqrt{2}}\}$$
.

 $\underline{\text{Note}}$: ces résultats ont été obtenus par un programme automatique : leur exactitude n'est pas garantie.

Découvrez mes autres applis sur lovemaths.eu/apps

