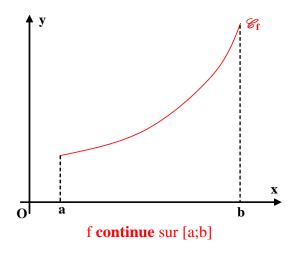
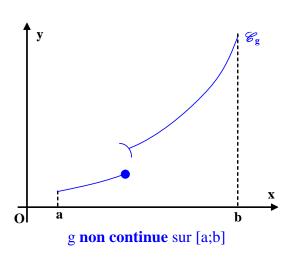
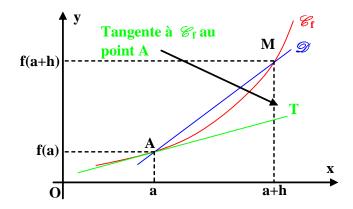
DERIVEES

• Fonctions continues: f continue en a si f est définie en a et si: $\lim_{x\to a} f(x) = f(a)$





• Dérivée et tangente :



A retenir

Coefficient directeur de T:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

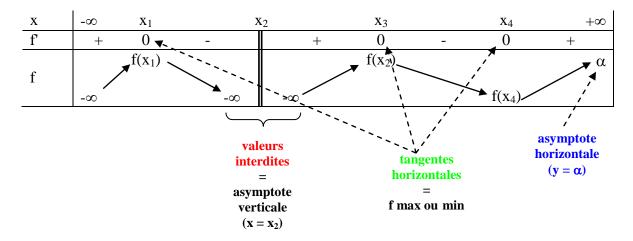
Equation de T:

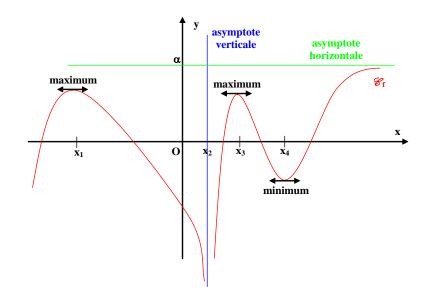
$$y = f'(a)(x-a) + f(a)$$

• Dérivées usuelles:

f	f'	${f f}$	f'
Х	1	ku	ku'
χ^n	nx^{n-1}	u+v	<i>u'</i> + <i>v'</i>
\sqrt{x}	_1_	\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
	$\overline{2\sqrt{x}}$		$2\sqrt{u}$
1_	$\frac{-1}{x^2}$	uv	u'v+uv'
X	x^2		
$\frac{\overline{x}}{1}$	$\frac{-n}{x^{n+1}}$	<u>1</u>	<u>-v'</u>
χ^n		v	v^2
e^x	e^x	<u>u</u>	$\frac{-v'}{v^2}$ $\frac{u'v - uv'}{v^2}$
		ν	v^2
$\ln x$	1	u^n	$nu'u^{n-1}$
	x		
$\cos(ax+b)$	$-a\sin(ax+b)$	1	<u>- nu'</u>
		u^n	u^{n+1}
$\sin(ax+b)$	$a\cos(ax+b)$	e^{u}	$u'e^u$
$\tan(ax+b)$	$a[1+\tan^2(ax+b)] = \frac{a}{\cos^2(ax+b)}$	$\ln u $	<u>u'</u>
	$\cos^2(ax+b)$		и
		$u \circ v(x) = u(v(x))$	$v'(x) \cdot u'(v(x))$

• Sens de variation: donné par le signe de la dérivée





A retenir

 $f'(x) \ge 0$: f croissante

 $f'(x) \le 0$: f décroissante

f'(x) = 0: minimum ou maximum

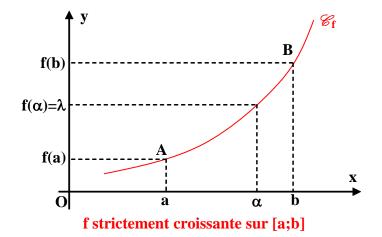
Asymptote horizontale : $y = \alpha$

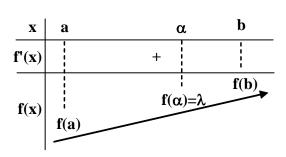
Asymptote verticale : $x = \beta$

• Résolution de $f(x) = \lambda$ par le théorème des valeurs intermédiaires

Si f est strictement croissante sur [a;b] (f'(x) > 0) et si $\lambda \in [f(a);f(b)]$ alors l'équation $f(x) = \lambda$ admet une solution unique $\alpha \in [a;b]$: $f(\alpha) = \lambda$.

Si f est strictement décroissante sur [a;b] (f'(x) < 0) et si $\lambda \in [f(b);f(a)]$ alors l'équation $f(x) = \lambda$ admet une solution unique $\alpha \in [a;b]$: $f(\alpha) = \lambda$.





 $f(x) = \lambda$ admet une seule solution sur [a;b]

