
## STATISTIQUES ET AJUSTEMENTS

- Série statistique à une variable:
  - o Mode: valeur du caractère correspondant au plus grand effectif
  - Médiane: valeur du caractère qui partage la population en deux classes de même effectif
  - O Moyenne:  $\bar{x} = \frac{n_1 x_1 + n_2 x_2 + ... + n_p x_p}{n} = \frac{1}{n} \sum_{i=1}^{p} n_i x_i$
  - o Moyennes partielles:  $\bar{x} = \frac{N \cdot \bar{n} + P \cdot \bar{p}}{N + P}$  avec  $\bar{n}$  moyenne partielle de N effectifs et  $\bar{p}$  moyenne partielle de P effectifs
  - 0 Linéarité de la moyenne: si  $t_i = x_i + b$  alors  $\overline{t} = \overline{x} + b$ si  $t_i = a \cdot x_i$  alors  $\overline{t} = a \cdot \overline{x}$
  - O Variance:  $V(X) = \frac{1}{n} \sum_{i=1}^{p} (x_i \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{p} x_i^2 (\overline{x})^2$
  - Ecart-type:  $s = \sigma(X) = \sqrt{V(X)}$



- Série statistique à deux variables:
  - o Ajustement par la droite des moindres carrés :



Equation de **D**:  $y = a(x - \overline{x}) + \overline{y}$ 

## A retenir

Point moyen  $G(\bar{x}; \bar{y})$  avec:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Coefficient directeur a :  $a = \frac{\text{cov}(x; y)}{V(x)}$  avec :

$$\operatorname{cov}(x,y) = \sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$$

$$\frac{1}{n}\sum_{i=1}^n x_i y_i - \overline{x} \cdot \overline{y}$$

O Ajustement exponentiel: on pose  $z_i = \ln(y_i)$  alors, si les points  $(x_i, z_i)$  sont alignés :

$$y = e^{ax+b} = e^{ax}e^{b} = e^{b} \cdot (e^{a})^{x} = B \cdot A^{x}$$

O Ajustement logarithmique: on pose  $t_i = \ln(x_i)$  alors, si les points  $(t_i, y_i)$  sont alignés :

$$y = a \ln x + b$$

